
.Goals of the Retargetable Back End Project PE-TI-995

DATE:

TO:

FROM:

SUBJECT:

REFERENCE:

KEYWORDS:

April 8, 1982
RD&E People

Louis Gross

Goals of the Retargetable Back End Project

None

LANGUAGES

ABSTRACT

This document contains a short statement of the goals of a proposed new
project to produce a retargetable back end for Prime translators. It
is being distributed to solicit comments from Engineering people. The
goals have been agreed upon by the project's members: Debby Minard,
David Spector, Scott Turner, and Louis Gross. After considering the
comments received, this PE-TI will be replaced with a more detailed
Requirements document.
Comments should be sent to the author
10B-17, or telephoned to X4052.

by X.MAIL to LOU, or mail stop

RD&E RESTRICTED

G o a l s o f t h e R e t a r g e t a b l e B a c k E n d P r o j e c t P E - T I - 9 9 5

What Prime Needs in a Back End

The main requirements for a compiler back end are:

o High quality object code -- it is important that a program run
on our computers faster than it does on similarly priced
computers of our competitors. This depends both on the speed
of our hardware and on. the quality of code produced by our
compi lers.

o Fast compilations -- a user debugging a program cares most
about the speed with which the next compilation happens.

o Maintainability — for most of its lifetime, a compiler is not
being built, but being enhanced and having bugs fixed. There
should be hardly any bugs, and the cost of enhancements and bug
fixes should be minimized. It would be worth a lot of
development effort to minimize maintenance effort.

o Easy Retargetability — Prime programs are going to have to run
on lots of different machine architectures. The l ist wi l l
certainly include V-mode, I-mode, the NSP instruction set, and
various micros (e.g., M68000 now, but micro-architectures are
evolving rapidly). We don't know what they all are today; it
is clear that we will have to produce new code generators, and
that it will be worth a lot of effort now to develop the tools
to minimize the effort in retargeting later.

All of the above requirements are important: to the extent that we do
not meet any of them, our costs will increase or our competitive
position will be worse.

Why Our Current Compilers Won't Do
The TSI back end in current use at Prime fails to meet the above
requirements:

o The code it produces is not of very high quality — the VAX
Fortran compiler seems to produce much more impressive object
code, especially for loops.
It runs slowly. This is partly because the TSI back end (also
front end) was written for maximum rehostability. In order to
run on machines with very small address spaces, it does
software storage management instead of using our large virtual
address space. While it has been possible to improve its
compile speed some by twiddling with it, we could do muchbetter with a basic design that takes advantage of the
strengths of Prime architecture.

Page

G o a l s o f t h e R e t a r g e t a b l e B a c k E n d P r o j e c t P E - T I - 9 9 5

o Itis very difficult to maintain — there are a lot of bugs
being reported, and many of our programmers (who could be doing
development work) are tied up in fixing them.

0 It is not easily retargetable -- producing a not very good code
generator for I-mode took about a year. The experience amongour competitors with the TSI back end has not been favorable:
the most successful compilers that used the TSI front end
(e.g., Digital's PL/1 compiler for the VAX) have used back ends
created in-house.

The Goal of the Retargetable Back End Project

The goal of the Retargetable Back End Project is to produce a compiler
back end that satisfies the needs described above. The new compiler
back end will:

1 be easily retargetable -- perhaps on the order of four months
by one experienced programmer to produce a very good code
generator for a new architecture.

2 be easily maintainable: bugs are few and easy to fix,
improvements (as compiler technology improves) and extensions
(as new languages are added) are easy to make.

3 be usable on output from the current TSI front end, probably
through an in ter face program that t rans la tes f rom TSI
intermediate language. Note that the intermediate language
actually used by the Retargetable Back End will be one chosen
to facilitate the kinds of manipulations that the back end will
be doing, but we will have to compile output of the current TSI
front end until we have new front ends. While the interface
program is in use, compilers using the new back end will run a
little slower and produce code of not quite the same quality
that we can eventually get.

4 be able to produce code for the intermediate language generated
for languages currently handled by the TSI front end: PL/1,
PL/1G, SPL, Fortran 77, Pascal, Cobol, RPG.

5 be easily extendable to produce code for the intermediate
language generated by a front end for languages we are likely
to have in the future: Ada, Modula-2 or Mesa. It will not be
easily extendable to languages like APL, LISP, Smalltalk, orSNOBOL.

6 initially (in about 2.5 years with four to six programmers)
generate code for I-mode (perhaps, the new NSP-mode — the
hardware schedule should determine which).

D o r t n

Goals of the Retargetable Back End Project PE-TI-995

7 be very fast when run for compile speed, but still produce
decent code.

8 produce great code when run for code quality, but not be so
slow as to make people unhappy,

P a g e 4

	1
	2
	3
	4

